The iron-proximal histidine linkage and protein control of oxygen binding in hemoglobin. A transient Raman study.

نویسندگان

  • J M Friedman
  • T W Scott
  • R A Stepnoski
  • M Ikeda-Saito
  • T Yonetani
چکیده

Time-resolved Raman studies have shown that communication between the heme oxygen binding sites and the surrounding globin occurs through the iron-proximal histidine linkage. By comparing the frequency of the Fe-His stretching mode in equilibrium deoxy- and photoinduced transient deoxyhemoglobins, we have found that ligand binding induces protein structural changes that strengthen the Fe-His linkage. The extent of this increase is observed to depend upon the quaternary state. This dependence is reflected in the restricted set of values observed in transient and equilibrium studies for the frequency of the Fe-His stretching mode in both R and T state deoxyhemoglobins. For T state hemoglobins the frequency increases from 215 cm-1 to approximately 222 cm-1 in going from the stable to the nanosecond transient deoxy species. The corresponding change for R state human hemoglobins is from approximately 222 cm-1 to approximately 230 cm-1. Studies on transients derived from Fe-Co hybrid hemoglobins reveal no subunit heterogeneity associated with the R state transient (230 cm-1) at high pH. We also observe that perturbations of the protein known to destabilize the structure of ligand-bound R state hemoglobins are associated with a decrease in the frequency of the iron-proximal histidine stretching mode in the corresponding transient species. Such effects can originate from changes in either quaternary state or solution conditions as well as species-specific variations in protein structure. These results indicate that modulation of the Fe-His linkage could be a general mechanism for regulating ligand binding properties in hemoglobin. A direct connection between ligand binding and the Fe-His bond is suggested from our finding that the structural parameter(s) regulating the barrier height for germinate recombination is likely to be the same as the one(s) modulating the frequency of the Fe-His stretching mode in the transient deoxy species. Based on the recent conclusion that the variation in the tilt of histidine with respect to the heme plane is primarily responsible for the spectrum of frequencies observed for the Fe-His stretching mode we have examined a model in which protein regulation of binding occurs via a protein-induced change in the histidine tilt.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low frequency vibrational modes of oxygenated myoglobin, hemoglobins, and modified derivatives.

The low frequency resonance Raman spectra of the dioxygen adducts of myoglobin, hemoglobin, its isolated subunits, mesoheme-substituted hemoglobin, and several deuteriated heme derivatives are reported. The observed oxygen isotopic shifts are used to assign the iron-oxygen stretching (approximately 570 cm-1) and the heretofore unobserved delta (Fe-O-O) bending (approximately 420 cm-1) modes. Al...

متن کامل

The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study.

The hemoglobin of the marine annelid Glycera dibranchiata possesses several unique features: the hemoglobin consists of multiple monomeric and polymeric components, quaternary structure is lacking, the distal histidine is replaced by leucine in at least one monomeric constituent, and 4) the protein exhibits extremely rapid ligand binding kinetics. The effect of these structural modifications on...

متن کامل

New Sequential Model for Human Hemoglobin: Alpha Subunit as Cooperativity Inducer

Hemoglobin is a tetrameric oxygen transport protein in animal bodies. However, there is a paucity of information regarding differences between alpha and beta subunits of hemoglobin in terms of oxygen affinity. The sequential model of Koshland, Nemthy and Filmer (KNF model) has attributed similar affinities to both alpha and beta subunits. The main purpose of the present study is to construct a ...

متن کامل

The leghemoglobin proximal heme pocket directs oxygen dissociation and stabilizes bound heme.

Sperm whale myoglobin (Mb) and soybean leghemoglobin (Lba) are two small, monomeric hemoglobins that share a common globin fold but differ widely in many other aspects. Lba has a much higher affinity for most ligands, and the two proteins use different distal and proximal heme pocket regulatory mechanisms to control ligand binding. Removal of the constraint provided by covalent attachment of th...

متن کامل

A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue.

The homodimeric hemoglobin (HbN) from Mycobacterium tuberculosis displays an extremely high oxygen binding affinity and cooperativity. Sequence alignment with other hemoglobins suggests that the proximal F8 ligand is histidine, the distal E7 residue is leucine, and the B10 position is occupied by tyrosine. To determine how these heme pocket residues regulate the ligand binding affinities and ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 17  شماره 

صفحات  -

تاریخ انتشار 1983